1.1 Introduction to Algebra

Need To Know

- What are Algebraic Expressions?
- Translating
- Expressions
- Equations

What is Algebra?

They say the only thing that stays the same is change. Our physical world is always changing and varying. In order to understand, interpret and predict the physical world we need a math way to express variableness - Algebra.

Algebra revolutionized the way we interact with the world.
Algebra is the power to translate the real world into mathematics.
This course will give the skills to exercise and understand this power.

Expressions

Definitions:

A \qquad is a letter used to represent a number that can change or that is unknown.
A \qquad is another name for a number.
An \qquad is a math statement with variables and/or numbers, often with operations signs and grouping symbols.

Examples: w+10,

$$
\frac{z}{9}
$$

$$
2 y(a+3), 5, \quad x
$$

Evaluate the Expression

Evaluate means find the value.
Evaluate the expressions below:
$13-z$ when $z=6$
$\frac{5 z}{y}$ when $z=9$ and $y=15$

Translation

2 more than Bill's age.

4 less than d.

The sum of 7 and twice n

$a+b$	Add, sum of, plus, more than, increased by
$a-b$	Subtract, difference, minus, less than, decreased by
ab, $\mathrm{a} \bullet$ $\mathrm{a}(\mathrm{b})$	Multiply, product times, twice, of
$\mathrm{a} \div \mathrm{b}$ a / b	Divide, quotient, ratio of, per

Equations

Definitions:

An \qquad is a math sentence that sets

Examples:

$2+7=9$
$5(4)=10$
$x-3=9$

Equations

Definitions:

A \qquad is a number for the variable that makes the equation \qquad .

Examples:

Is 7 a solution to $94 / \mathrm{y}=12$?
Translate:
15% of all waste is recycled. This is the same as 47 million tons of recycled material. What's the total waste generated?

> end

1.2 The Laws of Algebra

Need To Know

- Some of the Laws of Algebra
- Commutative
- Associative
- Distributive

Commutative Law of Addition

- \qquad
- Changing \qquad in addition is still equivalent.

Commutative Law of Multiplication

- \qquad
- Changing order in multiplication \qquad .

Associative Law

Associative Law of Addition
-

- Changing \qquad in addition is still equivalent.

Associative Law of Multiplication

-
- Changing groups in multiplication \qquad

Distributive Law

Distributive Law

-
- Multiplication distributes across addition

Examples

. Check for Understanding

Match the statement to its corresponding Law

Math Statement
$x(9 w)=(x 9) w$
$x+9+w=9+x+w$
$4(a-5)=4 a-20$

Laws
Commutative
Associative
Distributive

Check for Understanding

Identify which law(s) correspond to each statement

1. $t+(3+w)=(3+w)+t$
2. $(7+y)+x=7+(x+y)$

Distributive Law - in reverse
 Definition:

Factoring or factor (verb) \qquad (noun) parts in a multiplication
\qquad parts of an expression separated by + or -
The Distributive Law backwards: $a b+a c=a(b+c)$
Examples: Factor each expression.
$5 y+5 z$
$9+9 x$
$14 a+56 b+7$

1.3 Fractions

Need To Know

- Prime Factoring
- Operations on Fractions
- Simplify (Reduce)
- Multiply
- Divide
- Add
- Subtract

Vocabulary

Definitions:
Prime numbers - are numbers that can only be factored by one and itself. \{

Prime factoring - means to write a number as a product of only prime numbers.

Prime factor 48

Prime factor 180

Reduce $\underline{9}$
21

Reduce $\underline{\underline{210}}$
98

Multiplication of Fractions

Simplify each expression
$\frac{6}{5}\left(\frac{2}{7}\right)$
$\frac{2}{3} \cdot \frac{5}{x}$ $\frac{9}{2} \cdot \frac{4}{3}$

Recall fraction multiplication

$$
\frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d}
$$

Recall - Division of fractions is \qquad
$\frac{\mathbf{a}}{\mathbf{b}} \div \frac{\mathbf{c}}{\mathbf{d}}=\frac{\mathbf{a}}{\mathbf{b}} \cdot \frac{\mathbf{d}}{\mathbf{c}}$
Simplify:

$$
\frac{7}{9} \div\left(\frac{1}{6}\right) \quad 15 \div\left(\frac{3}{2}\right)
$$

Add and Subtract Fractions

Recall the method to add fractions

Recall the method to subtract fractions

Renaming Fractions

Recall how to use the \qquad to rename fractions.
$\underline{9}=-$
$\underline{19}=$ \qquad
1648
42
210

Least Common Denominator

Definition -
The least common denominator (LCD) is the \qquad

Ways to find the LCD -

1) Use intuition
2) Use the prime factoring method

Find the LCD
1, 1
1, $1, \underline{1}$
610
246

How to find the LCD

Find the LCD for 1) 12 and 18

Steps to find LCD
2) 60 and 42
0. \quad OR

Prime ___ each denominator
2. Create a product

- using kind of factor
- raised to the
that occurs in any one factoring

Add and Subtract Fractions

Recall how to add fraction How to add or fraction
$\frac{5}{7}+\frac{5}{21}$
Find the LCD
Rename each fraction
(use the "fancy one")
Add numerators
Reduce

- How to + or - fraction

1. Find the LCD
2. Rename (use the "fancy one")
3. Add numerators
4. Reduce

Simplify:
$\underline{7}-\underline{5}$
810
Simplify:
$3-\frac{3}{5}$
1.4 Subsets of Real Numbers

Need To Know

- Subsets of the Real Numbers
- Comparisons Symbols
- Absolute Value

Numbers are all \qquad Numbers.

Irrational Numbers are the numbers that aren't Rational.

Numbers are the
(numbers of the form a / b where b is not zero)
Numbers are the numbers $=$ \{
$\{0\}+$ Natural Numbers
Numbers are the numbers $=\{$

- Check for Understanding

$\left\{-5,-0.25,0,1, \pi, \frac{2}{7}, \sqrt{2}, 0.33 \overline{3}, 5\right\}$| Categorize and list the numbers |
| :--- |
| from the set to each set below. |

Natural Numbers	Rational Numbers		
$\left.\begin{array}{lll}\{ & \} & \{ \\ \text { Whole Numbers } & & \text { Irrational Numbers } \\ \{ & \} & \{ \end{array}\right\}$			
Integers		Real Numbers	
$\{$	$\}$	$\{$	$\}$

Comparison Symbols

True or False
$4 \leq-4$
$-4 \leq 3$
$-4 \leq-4$

$a=b$	a is equal to b
$a \neq b$	a is not equal to b
$a<b$	a is less than b
$a \leq b$	a is less than OR equal to b
$a>b$	a is greater than b
$a \geq b$	a is greater than OR equal to b

Key Vocabulary
Positive Numbers - Numbers to the right of zero.
Negative Numbers - Numbers to the left of zero.
Opposite of a number is on the other side of zero.
Points on the number line correspond to real numbers.
All of the points represent all of the Real Numbers.
Absolute Value - \qquad

Inequality Comparisons
If a number is further left on the number line, it is less than (<).
If a number is further right on the number line, it is greater than ($>$).

Examples: Fill in the blank with $<$ or $>$.

$$
-7 _3 \quad-1 / 4 _-3 / 4 \quad|-8| _|-5|
$$

1.5 Addition of Real Numbers

Need To Know

- Two models for addition
- Rules to add signed numbers
- Simplifying Expressions
- Translation

Two Models for Addition

About Addition

1. The \qquad for adding signed numbers.
2. The \qquad for adding signed numbers.

Why do we have to look at two models?

- Developing intelligence requires the ability to see things from more than one perspective.
- These models help us generalize the rules of adding.
- In order to really grasp a mathematical concept you need to understand it numerically, analytically and graphically.

Adding Signed Numbers

Financial Model

- \qquad ___or credits to your account.
- \qquad numbers correspond to or debits from your account.

Deposit + Deposit	$=$
Debt + Debt	$=$
Deposit + Debt	$=$
Debt + Deposit	$=$

Adding Signed Numbers

Vector Model (Adding with the Number Line)

- Vectors are graphs of arrows with length and direction.
- Positive numbers are arrows to the right.
- Negative numbers are arrows to the left.

Examples

1) $2+5$

2) $(-3)+(-1)$

3) $(-5)+2$
4) $4+(-6)$

Adding Signed Numbers-Rules

Rules for Adding

1) If the signs are the \qquad the sign values and \qquad he sign.
2) If the signs are the \qquad ,
\qquad values and keep the \qquad the value.

Examples

1) $4+3$
2) $(-2)+(-6)$
3) $(-5)+2$
4) $8+(-5)$

Adding Like Terms

____are parts of an expression
They may be numbers and/or variables often combined with multiplication or division.

- Numerical Coefficient is the number factor of a term.
- Like Terms are terms with the exact same variable factors.

The Distributive Law helps us simplify expressions:
$4 x+9 x$
Adding Like Terms is as simple as adding coefficients.

$$
\begin{aligned}
& -11 b+5 b \\
& 2 x+(-5 y)+(-5 x)+(-9 y) \\
& 8+a+(-5.5 a)+7
\end{aligned}
$$

Translation and Practice

Write the expression in mathematics and simplify.
The sum of -5 and -11 increased by 4 .

Simplify the following expression.
$[18+(-5)]+[9+(-10)]$

1.6 Subtracting Signed Numbers

Need To Know

- Opposites
- Idea of Subtraction
- Rule for Subtraction
- Translation

Opposites

Definition:
The opposite of a number " a " is written \qquad .

Recall: \qquad
Example: Find $-x$ and $-(-x)$ when $x=3$.

The Law of Opposites
$a+(-a)=0$

Idea of Subtraction

Goal: To make a model for distance and to make the rule of subtraction understandable.
(1)Problem: If a football team makes a play from the 33 yard line to the 39 yard line, how much distance did the team gain.

Idea of Subtraction

Goal: To make a model for distance and to make the rule of subtraction understandable
(2)Problem: The team punts the football from 2 yards behind the goal line. The ball stops on the 50 yard line. How many yards did the ball travel?

Rule For Subtraction

Rule for subtracting signed numbers

- \qquad is the same as \qquad .
- \qquad

Examples: Change each to addition
3-4
3-(-4)
-3-4
$-3-(-4)$

Subtraction of Signed Numbers

Write each as an addition problem and then simplify your answer.
11-5
$11-(-5)$
-11-5
$-11-(-5)$

Subtraction Practice

Simplify
Simplify
3-4-5
$-9 x+5-3 x$
$24-(-12)+7-15 \quad-5+3 b-7-5 b$

Translation

Difference, decreased, take away, reduced, less and from are all key words for subtraction.

Examples: Translate into mathematics and use the rule of subtraction to simplify.

Subtract 5 from 8.

Find the difference of 4 and $\mathbf{- 7}$.

.7 Mult. \& Div. of Real Numbers

Need To Know

- Multiplication of Signed Numbers
- Division of Signed Numbers
- Apply to: Integers, Decimals and Fractions

Sign Patterns in Multiplication

Look at these multiplication problems and draw conclusions about sign results.

$(3)(2)=$	$3(-2)=$
$(3)(1)=$	$2(-2)=$
$(3)(0)=$	$1(-2)=$
$(3)(-1)=$	$0(-2)=$
$(3)(-2)=$	$-1(-2)=$

Practice - Multiplication

Summary of sign pattern for multiplication
$(+)(+)=+$
$(+)(-)=-$
$(-)(-)=+$
$(-)(+)=-$

Simplify each expression
$(-4)(-8)(-1)$
$(-3) \cdot(-5) \cdot(-2) \cdot(-1)$

The product of an odd \# of negatives is \qquad
The product of an even \# of negatives is \qquad

Simplify each expression
$-9\left(\frac{1}{3}\right)$
$-\frac{6}{5}\left(-\frac{2}{7}\right)$

Recall fraction multiplication

$$
\frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d}
$$

Division w/ Signs and Fractions

Since $a \div b=a \cdot \frac{1}{b}=\frac{a}{b}$,
the sign rules for DIVISION
are the same
as for MULTIPLY.
$(+) \div(+)=$
$(-) \div(-)=$
$(+) \div(-)=$
$(-) \div(+)=$

Fraction Facts

$$
\underline{\text { Top }}=
$$ Bottom =

$$
\frac{0}{5} \quad \frac{5}{0}
$$

Division of Fractions

Recall - Division of fractions is the same as multiplication by the reciprocal.

$$
\begin{aligned}
& \frac{\mathbf{a}}{\mathbf{b}} \div \frac{\mathbf{c}}{\mathbf{d}}=\frac{\mathbf{a}}{\mathbf{b}} \cdot \frac{\mathbf{d}}{\mathbf{c}} \\
& -\frac{7}{9} \div\left(\frac{1}{6}\right)
\end{aligned}
$$

1.8 Exponents and Order of Op.

Need To Know

- Exponents
- Order of Operations
- Simplifying Expressions

Exponents mean repeated multiplication
Notation: 4^{3}
Examples:
5^{4}
$(2 x)^{5}$
$(-7)^{2}$
-7^{2}

Order of Operations - Simplify:

Always work left to right

1. Evaluate $20 \div 5+15$
2. Evaluate
3. Evaluate
\qquad $8 \div 2 \cdot 4$
4. Evaluate
in order \qquad

$$
12 \div(-3-5)
$$

Practice - Order of Operation

Order of Operations -

Always work left to right

1. Evaluate
grouped expressions.
2. Evaluate exponents.
3. Evaluate
multiplication or division in order left to right.
4. Evaluate addition or subtraction in order left to right.

Simplify:

$-2(6-10)-3|5-8|$

Practice - Order of Operation

Order of Operations -

Always work left to right

1. Evaluate
grouped expressions.
$-2 \cdot 5^{2}+3 \cdot 2^{3} \div(-1)^{4}$
2. Evaluate exponents.
3. Evaluate
multiplication or division in order left to right.
4. Evaluate addition or subtraction in order left to right.

Practice - Order of Operation

Order of Operations - Simplify:

Always work left to right

1. Evaluate
grouped expressions.
2. Evaluate exponents.

$$
\frac{6(-2)+5(-3)}{5(4)-11}
$$

3. Evaluate
multiplication or division
in order left to right.
4. Evaluate
addition or subtraction
in order left to right.

Simplifying Expressions

Recall: $-1(a)=-a$, and that
opposite and negative are synonymous
What is $-(a+b)=$
Examples:
$-(7 \mathrm{z}+6)$
$-(13 y-5 x+8)$
$-\left(-8 x^{3}+4 x^{2}-3 x\right)$

Simplifying Expressions

Examples:
$7 y-(2 y+9)$
$9 t-5 r-2(3 r+6 t)$
$8 n^{2}+n-7\left(n+2 n^{2}\right)$

